
AD-AIS6 763 STRESSES AND DISPLACEENTS IN A FOUR LAYERED SYSTEM t/j
WITH FIXEO 9OtTOM..lUI CENTRE DE RECHERCHES DE
L'INSTITUT SUPERIEUR INDUSTRIEL CATHO..

UNCLASSIFIED I F VAN CAUNELAERT 30 APR 85 R/D-4928-EN-OI F/0 9/2 NL

mhhhhIIIIIIIIlElhhlhlllllll
EIIIIIIIIIIIIl
IIIIIIIIIIIIl



1III

I12 II--o4 IM-6



M



CENTRE DE RECHERCHES

DE L'INSTITUT SUPERIEUR INDUSTRIEL CATHOLIQJE

DU HAINAUT

Stresses and Displacements
in a four layered System with fixed Bottom

Contract: DAJA-85-C-0013

Distribut ion/
Avaiabilty CdolIntermediate Report by

Avail and/or
Dist special. Dr. Ir. F. Van Cauwelaert

- Head of the Department of
civil Engineering.
Director of CERISIC.

I Thi deammm hm bow appso-e
hr -W =s and ruls 10

.........~d.



Stresses and Displacements in a four layered system with fixed bottom.

Intermediate Relort.

Table of contents.

Introduction 1

1. The interface conditions 2

1.1. The partial friction condition 4

1.2. The fixed bottom condition 10

1.2.1. Basic equations 11

1.2.2. Fixed bottom expressed by mechanical condition 12

1.2.3. Fixed bottom by geometrical and mechanical condition 12

2. Solution of particular numerical problems 16

2.1. The full slip condition 16

2.2. Over- and underflow problems 19

2.3. The vertical deflection at the surface 21

2.4. Convergency in the first layer 26

2.4.1. Stresses and displacements under an isolated load 27

2.4.2. Stresses and displacements under a uniform load 28

2.4.3. Relations for the radial stress 28

2.4.4. Relations for the vertical stress 29

2.4.5. Relation for the shearstress 29

2.4.6. Relations for the vertical displacement 29

2.4.7. Relations for the horizontal displacement 30

2.4.8. Resolution of the double integrals 30

2.4.9. Resolution of the Lipschitz-Hankel integrals 31

2.4.10. Expressions for computations in the axle 32

3. The complete algebraical solution. 33

3.1. Algebraical analysis of a three-layer system 33

3.1.1. Boundary conditions of the system 33

3.1.2. Solution of the system of 10 equations 34

3.1.3. Relation for the vertical deflection at the surface 41

3.1.4. Comparison with existing programs 42

a ,
...



3.2. Algbraical analysis of a four-layer system 44

3.2.1. Boundary conditions 44
3.2.2. Solution of the system of 16 equations 46
3.2.3. Values of the parameters Ai, D1  60

3.2.4. The deflection at the surface 62
3.2.5. The stresses and displacements in the first layer 63
3.2.6. The stresses and displacements in the 2nd layer 64
3.2.7. The stresses and displacements in the 3rd layer 66

References 67

I ' I

/ - .. -



I I
'

STRESSES AND DISPLACEMENTS IN A FOUR LAYERED

SYSTEM WITH FIXED BOTTOM

Intermediate report.

Contract: DAJA-85-C-0013 April 30, 1985.

Introduction. -

The cresearch work necessary to fullfill the requirements of the contract

that must lead to the establishment of a computer program able to

calculate all stresses and displacements in a four layered system with

fixed bottom submitted to a series of loads, is based on:

- existing material: isotropic multilay r theory (BURMISTER, 1943)

and anisotropic multilayer theory ( N CAUWELAERT, 1983);

- original research work: interf conditions (fixed bottom, partial

friction) and satisfactor nvergency at the surface and in the

first layer of the s em.

This intermediat port will only deal with the original research work

that had e performed. The required original research is completely

te nated, which jusitifies this report, and at an entirely satisfactory

level as will be shown.

* -'This report contains three parts:

9_4A complete discussion of the interface conditions.
)

q/ )The demonstration that satisfying convergency can be obtained, and in

the meantime overflow problems can be eliminated, if the equations are

written in closeform ali/ugh in a sufficient comprehensive form so that

the whole problem can still be overlooked but in such a way that all

numerical problems can be solved. & -#
)

a,)The complete algebraical analysis leading to the equations in extended

form for an isotropic four-layered system. The analysis is also developed
for a three-layered system to enable us to compare and to check the

results with those obtained by means of reliable existing programs.

;",I
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1. The interface conditions.

The stresses and displaceme~ts in a layer of a multilayered system are obtained
for an isotropic body from following stress function (BURI4ISTER, 1943):

and are- given by
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-T,

T. (Y &r) I -11c"

r.Z "' 'r(-+)--V7)e

CjV

+ Cr{2hA+V%7)e -Dn2 4 )3

j Y" 3(2-w (AV-Zi I

(V-A ) V"
4vx- iI



I *
'

I.R.3

where

aL is the radius of a uniformly distributed circular load
p is the value of the vertical pressure

r is the horizontal distance from the axle in a cylindrical coordinate system
Z is the depth

TZ is the vertical stress

Tr is the horizontal radial stress

T,. is the shearstress

w is the vertical deflection

U. is the radial (horizontal) displacement

E. is the Young modulus of the concerned layer
f; is Poisson's ratioof the concerned layer

AKI, are unknown parameters to be determined by the boundary conditions
is the Besselfunction of the first kind of order zero

5, is the Besselfunction of the first kind of order one

rn is an integrating parameter

In the case on an anisotropic body they are obtained from (VAN CAUWELAERT, 1983):

This stressfunction differs fundamentally from the preceeding one: indeed in
putting si = 1 in it, we do not obtain the stress function for the isotropic case.
We conclude that the two cases must be handled in a separate way.
The stresses and displacements are given by

+ w,( iM+1 ,Me
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(w- r) -T"a- (A4 fik bo 4

+ - 06,
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where

n~i= Ey j is the degree of anisotropy, the ratio between the vertical

and the horizontal Young modulus of the concerned layer

is Poisson's ratio expressing a strain in the horizontal plane

induced by a stress in the vertical direction

, A !

- . is the index of anisotropy.

1.1. The partial friction condition.

Let us consider a n-layered system, consisting in (n - 1) layers of a finite

thickness built on a semi-infinite body.

For each layer exists a stress function 4 ,(AS biCi D.) with 4 unknown parameters:

the total of unknown parameters is 4n.

Two parameters depend on the shape of the load at the surface

At infinite depth stresses and displacaments must vanish and thus An and C = o.

We remain with 4n - 4 = 4(n - 1) parameters to be determined with 4 conditions

at each interface.

The hypothesis is introduced at this stage that under effect of the load, the

layers remain individually fully in contact, which is expressed by imponing taht

at the bottom of each layer and at the surface of next layer vertical stresses

(r.), shearstresses (Cr- ) and vertical displacements ( W) are identic.

The fourth interface condition depends on the relative adhesion in the horizontal

plane between the considered layers.

The two extremes are

- full continuity, expressed by setting that the horizontal displacements (Lt)

are identic;

WOW



I.R.5

frictionless interface, by considering the interface as a principal plane

and thus by setting the shearstresses equal zero.

Partial adhesion has been temptatively introduced by several authors, utilizing,

in the same way as WESTERGAARD (1926), a relation between horizontal displace-

ments and shearstress:

where ui is the horizontal displacement at the bottom of the i-th layer and ui+ 1

that at the surface of the (i + 1)-th layer.

We shall prove that such a relation cannot be correct in the case of a multilayer.

One has, for an isotropic body, following relations between displacements,

shearstrains and shearstresses:

We know from the boundary conditions that

This is true eveiwhere on the interface so that we also can write that

arw, C'W6,'( T (b

By substraction we obtain -

(bLR3 7- L1- ~~tz

We can thus write
A - bI

w L Cb7.]

This relation must be satisfied for all values of the parameter m, so that

one must necessarily have that
~ _ ___

(b -&

The solutions of those differential equations are

Comparing those solutions with the relation above for the horizontal displacements

we conclude that the obtained expressions must be deduced from a stressfunction

different from the original one which is nevertheless the unique solution of the

IJ
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compatibility equations. Comp atibility is thus not respected and relation

1j(U;-L4,j - rz cannot be accepted.

Our meaning is that the only way to express partial continuity (or partial

adhesion) consists in writing

u i = k.u i+1

with E- L -. 3
When k = 1, one has full continuity

When k # 1, one has partial continuity.

It is necessery now to give a physical sence to the parameter-k.

Excepted the extreme case of a frictionless interface, there will always be

some friction between the layers at their interface.

We rely then our approach on Coulomb's definition of friction. If is the

angle of friction at the interface, there will be no sliding (in the geotechnical

sense of the word) between the two layers as long as Tz <Cz ¥' -

The limit value for k, at which sliding due to shearfailure will occur, is then

given by Lr2/.

Beyond this value of k, shearstresses vanish and the interface has to be

considered as frictionless.

We must of course take into account here the stresses due to the wheel load

but also those due to the own weight of the layers above the interface, which

reduce to vertical stresses only.

The final relation becomes then

The values of the stresses due to traffic varie with the distance to the axle

of the load.

We carry then the calculations out in two steps:

- we calculate for different values of k the maximum value (function from

the distance from the axle of the load) of the ratio "C/O-

- we determine the limit value of k in function of tgt.

As an illustration of the method, we have taken the most simple case, that of an

isotropic two-layer system, with H the thickness of the first layer.

For simplicity we take QS ) . 0.5

!F
.... .. 2 ... .. ... ... .._ a,: . ...... .... .. .. . . .. .
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We write A;- A , ti'MX ti, K4 ,;

F,,

G. (A- I-, )

The boundary conditions are then:

At the surface (z = 0):

q i- o -1 - , , .

'C- 7-+= 0 +

At the interface (z = H)-.

A.~~ ~ +-1 I ,
4-~1 4 DIi

&,,-Lrz. Ae - Ib, + ( .i4 I)C, H (A-L H Jl),£tC

VV- LW2 A, 4CA-^ )A]

Solving the system of 6 equations, one obtains at the interface (z = H):do

) (wir) 
+ 

pI + 2 I'(4V
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We have performed the computations for different values of H/a, with a = 10 cm,

p = 0,6 MN/m 2 and E1/E 2  1 10. We have considered a specific weight of the

first layer of 22 kN/m 3 .

The results ar given on figure 1: in abscissa one finds the values of the

ratior/0 and in ordinate the relative thicknesses.

The curves give for different values of k the maximum value of l/cr.

Fiq.1
H/a

21

o75 5 .25 0.125 .0625 0.03125

tgD= 0.58 tg= 1.5

.. .......
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This is practically impossible.

One could of course be tempted to interrupt the integration procedure when the

first integral has converged to a satisfactory level, "hoping" that the second

integral can be neglected at that moment.

To illustrate the danger of such an approach we return to the semi-infinite body.

In the case on an isotropic body, the deflection at the surface and the vertical

stress at a depth z are given in the axle of the load by

=(3)

Those integrals can of course be solved analytically

E

We can compare (2) with the second integral of (1) and (3) with the first

integral of (1).

We perform then a numerical integration of (2) and (3) and stop the procedure

when (3) has converged to a satisfactory level, which is easily checked by

comparing the obtained result with the correct one given by (5).

The difference between the numerical result for w obtained at that moment

by integration of (2) with the analytical result given by (4) will give us an

illustration of the possible error when integrating (1) and stopping the

process when its first integral has converged.

This difference is illustrated in figure 2.

In abciss, we have the convergencylevel adopted for the vertical stress and in

ordinate the error, expressed in %, on the values of the vertical stress and

the vertical deflection.

One sees that for even such low levels as 10- 3, the value of the vertical stress

is absolutely correct, while the error on the deflection varies between - 5%

and + 8%, depending on thechosen convergency level and the relative depth at

which the vertical stress is computed; worst of all is that we have no

means to predict either the direction either the amplitude of the error onw.
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2.3. The vertical deflection at the surface.

When one computes the deflections at the surface, convergency is obtained

only very slowly.

To illustrate this let us look at the expression of the deflection at the

surface developed in § 2.1.

To avoid overflow problems we divide numerator and denominator by e
2mH

F P7 I2~~ CA4)e k'1eJ

For large values of m, numerator and denominator tend both to F, so that for,

let us say m = mL$ the expression above could be written as follows:

W -1 ) Y

I-
F 2 w-I) - (-A4.2 k 14- (A -F)p_

E, - ) .O

The first integral converges fast, the second converges proportionnaly to 1/m.

This means that if one should want a result correct at 10 5, one has to perform

the numerical integration of the second integral until values of m above 100,000!

" I I I
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Underflow will obviously occur now, but most of the computers have a routine

that sets variables subjected to underflow equal to zero. If such a routine

does not exist, it is very easy to build it into the program.

But more interesting is the fact that, having transformed the relations for
C1 and D1 , convergency will occure quite quickly and in a complete safe way:

the numerators both tend to zero, while the denominator tends to a constant F.

This can be obtained utomatically in writing the boundary counditions at the

surface (z = -H) as follows:

Vk V)~i} -1214

However this is only true in the case of a two-layer system.

In a three-layer with H1, the thickness of the first layer, and H2, the

thickness of the second layer, occur exponents such as

and C 2

But they eliminate when writing the denominator in closeform so that dividing

the expressions by the largest out of e2mH1 and e2mH2 isenough. If one

should divide by e2mH 12mH2 , the denominator would also tend to zero, which

should stop the program because of dividing by zero.

Here is another reason for writing the equations in closeform for three-

and more-layers.
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2.2. Ovey- and underflow problems.

During the integration procedure m varies from 0 to a value high enough to

ensure convergency. We mean by this that the integration procedure can be

stopped from the moment on that the terms of the series become so small that

they have no more influence on the final result and can thus be neglected.

Practically, however this means that m can reach quite high values such as

20 or 30 for example.

To illustrate the influence of this, let us go back to the two-layer

developed in the preceeding paragraph.

The values of C1 and D1 , from which the values of all the other paramebs

can be deduced, are

C2_F_ 2i 1 42(A) 2w

The geometrical unities are generally expressed in function of a, the radius

of the load.

Let us consider H/a = 5.

One imediately sees that no computer can handle exponents as emH/a and e
2mH/a

without overflow occuring for values of m above 10.

However this problem can easily be solved by dividing both numerator and

denominator by e2mH:

F •. -c7*

F+ (F).Ii -C 2 1)e +

/k

K.
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Replacing A1, B1, C1 and D, by their values, the deflection becomes

"C"-: ;0) A

q.," + (2S -4)2r-H A ((Az- ,), F) e- 2W

At the origin of the integration (m = 0), the term in between brackets

becomes indefinite: 0/0.

This has no influence when computing stresses, because the Bessel functions

products occuring here are also zero at the origin: Jo(mr).J 1 (ma) = 0

for m = 0.
But in the case of the deflection

£4 .(vmr).SCA o

It is therefore absolutely necessary to have the term in between brackets
in close form to be able to determine its value for m = 0..

The importance of the first term of the series is not negligible: for m = 0

the term in between brackets is equal to LEI.
If h is the interval choosen for the numerical intearation, one can then write

'I4 (A( E, ,

and, if we make a semi-infinite body from the two-layer (E1 = 2

-(A do ____

Comparing this expression with that for the deflection at the surface of

a semi-infinite body

w.4 A=
one concludes that the contribution of the first term h/6 is indeed not negli-

gible, especially when we have in mind that the only practical measurement

that can be performed on a real roadstructure is the vertical deflection

at the surface.

_ _ ... 9
I .,. -.,~ ,,. . = I,. .. ,a. • m mm m m m m
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At the surface (z = -H):

A I + b, C (A- 2, - w, )Y , (A- ,1-4)L
IAi- +i- D k,14

At the frictionless interface (z = 0):

A,,- *, 2*. , + ,,

,A - - -- ,

-211

Solving the system for C1 and D1t one obtains (BURMISTER, 1943)

C) [i- F - CI-CA_ -V

VV

where

F = (A 
-+ 

V ( 
-.. , .'' )

, = - (,2-, )

The vertical deflection at the surface is

-- " " ,..-" " -7 h" - .... . . .



I.R.16

2. Solution of particular numerical problems (convergency-preblems).

2.1 The full slip interface condition.

The value of any stress or displacement is obtained from one of the above

mentioned relations.

Let us consider, for example, the vertical stress in the i-th layer of

an anisotropic layer:

'h ~y\YA(Cisi v-qt. +- flSist. eou

The integration can only be performed numerically.

Thus one must calculate the value of the stress for a set of values of m

growing from 0 to a value high enough to ensure convergency.

For each value of m, those of the parameters Ai, Bi, Ci and Di must be

determinated out of the set of boundary counditions, a system of (4n - 1)

equations with (4n - 1) unknowns in the case of a fixed bottom and n layers

above it.

The first programs solved this problem by inverting the matrix of the

(4n - 1) unknowns. Nevertheless the inversion procedure leads in some

cases to unsoluble difficulties because of the presence of the negative

exponents tending to zero in the determinant of the denominator.

Other programs have tried to avoid the inversionprocedure as follows: one

chooses appropriate values for Bn and Dn , goes trough the whole set of

equations and verifies in how far the surface conditions are met. One

then chooses another pair of values for B n and Dn and follows the same

procedure. Since the whole process is linear, the correct values for Bn and

Dn can finally be obtained by linear interpolation after two runs. The

difficulty lies in the appropriate choice of the values rf B nard Dn to

ensure a numerically correct interpolation.

However, even those programs are not entirely appropriate for the cases with

frictionless conditions at some interfaces.

We shall show this with the most simple case, that of a two layer.

Writing A-,bi,Ci Di instead of y ,,, the boundary

conditions are in the case of two isotropic layers, with the origin (z = 0)

at the interface, the thickness of the first layer being H and the second

layer semi-infinite:

I,.77
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We also conclude that the relative influence on the deflection is much more
important when we fix the horizontal displacements (u = 0). This should
be the case in a laboratory testpit with lateral walls, but less in the

case of a real road where lateral movements are not restricted.

The relative influence of the conditiont,= 0 is also more important than
that of the condition w - 0, altough less important than the condition u = 0.

It seems nevertheless very unlikely that there would be no friction between

the subground and the last layer.

The easiest way to fix the bottom from a mathematical point of view is on
the other hand the condition w = 0.

Taking then into account the little influence of the chosen condition on the

deflection at the surface and the fact that conditions u = 0 and T ,.= 0
have less physical sense, we shall retain the condition w = 0 as the most

indicated fixed bottom condition.

/ '
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The deflection at the surface is given by the same relation as above with the

appropriate value for C.

One sees that in the 3 cases, the deflection is composed of a first term

This term is the deflection on top of a semi-infinite body.

In the case of an isotropic body, one has (n = 1)t

w o

The second term wr depends on the choosen boundary condition; but in

the three cases it reduces the value of w, because of the fixed bottom-

We have computed the values of wand wr for different values of H/a. The

results arde given below, at a factor(-+i})/E , for s = 0.5 and for the isotropic case.

s = 0.5 wO = 1.025

H/a wr ( ) rz ) wr (LA o) wr (w= =)

1 0.339 0.729 0.153
2 0.120 0.295 0.043
3 0.058 0.147 0.019
4 0.034 0.086 0.011
5 n.022 0.057 0.007
6 d.015 0.040 0.005
7 0.011 0.029 0.004
8 0.009 0.023 0.003
9 0.007 0.018 0.002

10 0.006 0.015 0.002

n =1 wO= 1.000

1 0.402 0.934 0.276
2 0.143 0.442 0.086
3 0.069 0.231 0.040
4 0.040 0.138 0.023
5 0.026 0.091 0.015
6 0.018 0.064 0.010
7 0.013 0.048 0.008
8 0.010 0.037 0.006
9 0.008 0.029 0.005

10 0.007 0.024 0.004

We conclude that from a depth of about H/a = 5, the absolute influence of the

fixed boundary is negligible. This influence will still be much lesser in the

case of a roadstructure where the E-moduli of the layers are sensitively higher

than the modulus of the subground.

7
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We now choose an appropriate function F(r) so that w becomes zero for z H.

. -. ),(h . I-"A
(A+ ,)Ayne-)

The final expression for the deflection is then

w = w, 4 (r)

One verifies that rtr) is indeed only a function of r and that w = 0 for z = H.
For the same reasons as those developed in § 1.1.2, one of the parameters

A or C must be zero.

The other paranter is obtained by a supplementary boundary Condition

(a mechanical condition):

- Zrz=o at the depth H

- k 0o at the depth H.
If we still suppose s4 and thus A = 0, one obtains in the case that Trz=Q

The deflection at the surface is then

(_ ) k,) _ e

+~ -n C.tr A -

EA S

In the case u - 0:

". ~ ~ ~ - e- 4C,,, ''

,PW
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1.2.2._Fixed bottomexpressed_byW.eLb in ]_gditiooDQ1y.

Referring to the stress and displacements equations given in paragraph 1, the

condition w = 0 at a depth H is written

Replacing B and D by their values

A e-w 4p - * f

(-t4~+) A-S1+

During the integration proces, the value of m tends to infinity, so that the

limit expression of the equation becomes

This relation can only be satisfied by setting

C.- o when $ >
VAo when .S 1 +

It is eas'Lly shown that in the case of an isotropic body, one must always have

C = 0, because of the factor z multiplying C in the stressfunction,.i

Taking s<"1 , C becomes H( p C -. s" j,

; -L.- " ' - _ _-

The expression of the deflection at the surface and in the axle of the

lod[,r~- f "-or ] is

limi exrion ofthe ) equa ion beomsC *) s

1. 2.3. Fixed bottom.b a..eometricl and a n'e.clanica condition.

V% e.. ... ... ...

The vertical deflection at a depth z Is given by

Tkn <i , C beoe )4 -1 VI 1 ,lc+i C K, SM 4[44-1)1
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But with the general solutions of the compatibility equations in multilayer

theory, we can do it also in another way by expressing that w = 0 at the

desired depth and determinating the corresponding values of the parameters
An  Bn, Cn and Dn.

Since there are thus several possibilities to express a same boundary

condition, it is necessary to compare the results obtained and retain the

one that seems the most appropriate.

To do this we shall consider the most simple case, that of the semi-infinite

body: the one-layer case.

.IT2.1._Basic-eguations.

Let us consider a semi-infinite anisotropic body submitted to a uniformly

distributed vertical pressure at its surface.

The stressfunction is

P
The surface boundary conditions (Cz,&, ,Ervz a-, z o ) are deduced from

the relations given in § 1. for the stresses

n (A+k) (Ak2 Iw" -

Solving this system for B and D, one obtains

V%(A-S)C.,+.-) S + .(A,+s)(,,+)A Ak-- S.

(A-S)(nj.") DSKM 4 - 2n.(A +V.)AV-,, (A+S)fC" t)C -J.t

The next step depends on the boundary condition that fixes the deflection

at a depth H.

II
L

- ,, A
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1.2. The fixed bottom c6nditlon.

The boudary conditions discussed in previous alinea implicate that the last

layer of the multilayer is considered as a semi-infinite body.

One can also consider the case of a multilayer built on an undeformable body,

that thus any vertical displacement vanishes at the contact face w'th the

undeformable body: we shall call this a fixed bottom condition.

This condition can be introduced inseveral manners and thus demands a

detailed analysis.

A vertical displacement is obtained by integration of the vertical strain:

It would not be correct to resort to an integration between limits, such as

where H could, for example, be the depth at which we want the bottom to be fixed.

In doing so. we would ignore the contribution (zero or not) to the vertical

deflection (or displacement) due to other parts of the body that we neglect

by integrating between specified limits.

The correct way consists in writing (TIMOSHENKO, 1970):

W i.dx +

where -(r) is a fonction of r only, and thus a constant regarding Z , so that

by differentiating we obtain again

(?v Ez

By choosing an appropriate expression for 4r) , we can obtain the bottom fixed

at the desired depth; by doing this, we introduce in fact a geometrical

condition fixing the reference level for the vertical deflections at the

choosen depth.

i
1

TI

, -!
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Let us consider an average value of tg = 1.5, value utilized in the design of

continuously reinforced concrete pavements (Mc CULLOUGH, 1981).

We deduce from figure 1 the limit values for k:

H/a = 1 k = 0.20

H/a = 2 k = 0.17

H/a = 3 k = 0.10

H/a = 4 k = 0.03

If we consider a surface layer built on a sand basecourse (P. )

the limit values become:

H/a = 1 k = 1

H/a = 2 k = 0.60

H/a = 3 k = 0.40

H/a = 4 k = 0.25

With our approach, the case of full continuity (ui = ui+ 1, often called full

friction) becomes a particular case for which the angle of friction between the

layers corresponds with a value of k = 1. For other values of k we have

partial continuity (ui A ui+I , what could be called partial friction or partial

adhesion).

We notice that for values of k smaller than one, ui is smaller than u,+,.

This means practically that the lateral movements of the surface layer are

retained, for example by shoulders. Such a construction reduces the vertical

stresses on the subground which improves the lifetime of the road structure.

For values of k larger than one, ui is also larger than ui+1 . Here the

lateral movements of the surface layer are easier than those of the sublayer,

as in overlayconstructions for example.

For the limit value k = , one obtains alsoTl2 = 0.

This case is called the frictionless interface.

For k = oO one obtains indeed B

which is the value for z in the case of a frictionless interface (BURMISTER, 1943)

as will be shown in § 2.1.

J
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The only way to solve the problem satisfactory is to split the expression

of the deflection in another way than the one we had done.

We first write the expression of the deflection with negative exponents only:

w--+1. -" . r).(, 01)

We then divide the numerator of the term in between brackets by the denominator:

S[- (2 4 (-1- F) thk'

and split the integral into two parts from which the first is integrable

analytically and the second converges in the usual way.

For r = 0, one has

44

For r = a, one has
o 4 -T M -T o ,, . / J1-

For r< a, one has

'0 &= r) (v" PL) j 
- S

where F is the hypergeometric function of GAUSS:
0

(c>,I _j(o4) Nt 12-) ...

VI
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For r> a, one has

The obtained result will now be correct, while convergency is reached as

fast as for the other equations for stresses.

But again, if we are to be able to compute as indicated, we must have the

equations in closeform at our disposal, although in such a form that the

integral can be split.

tI

ii

t/
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2.4. Convergency in the first layer.

As for the deflection at the surface, the numerical computation of the

stresses in the first layer, in fact nearby the surface, also converges

very slowly.

To illustrate this let us look at the relation for the vertical stress in

the first layer (the equation is given in § 1.):

-4 rlx t "

We replace A1, B1, C1, D1 by their values obtained in § 2.1.

The values of z are negative in the first layer (z = 0 at the interface).

The term

converges very slowly for values of -z nearly equal to H, the other terms

converge normally.

To solve the problem created by the first term we divide again numerator by

denominator:

+ PSAF(H)2+X (.4 4 2 W) I-i-F'~

The second term of the second member converges normally so that we can again

split the integral in several parts from which the one that converges slowly is

U-43 ) , At v A
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This integral is known as a LIPSCHITZ-HANKEL integral, but only some

particular cases are integrable analytically. To solve the problem for
all cases we have to make a detourthrough the analysis of stresses and
displacements in a semi-infinite body submitted to an isolated local force P.

2.4.1..Stresses.and.dis 2acem.e.nunderanIsolated load.

The Hankel transform in the case of a uniformly distributed load is

~ 0

We consider the resulting load P =irpa 2 acting on a surface whose area
reduces to zero.

The relations for the stresses and the displacements are the'n given, in the

case of an isotropic body, by

- Cr. r) ) ,

0

I 3% r2

(,x 2 C V2

r ((i-Ix. +

= -u>'x : (Mir)#o 4 ~

II,
3/
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a-1t
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2.4.2. Stresses and displacements under a uniformly distributed load.

The stresses and displacements under a uniformly distributed load can be

obtained by integrating the relations under an isolated load over the

concerned area

where Orj is given by one of the relations of § 2.4.1. wherein the distance

r must be replaced by rL - - 2r c.oO

2.4.3. Relations for the stress (I'c

The relation for Cf under a distributed load is given by

Y- PC' -'tW

so that comparing with the expression for the stress under an isolated load

we can conclude that

' -S
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* kL{ (2 - T'- t2r co 6) 3

12 k o, (Mf) (M -) " /roc4

r'4.4. Relations for the stress r

These relations can be deduced from those established for the stress 9r

2.4.5. Relation for the stress t-rz-

Tr-x )OT (m)tI7CU

2.4.6. Relations for the vertical disel acement w.

TrT' (mr T tm01

tLv: _ _ _ _P__ _-

.~~.. T~r~L 17- ) .J ,A~&

-ir
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2.4.7.-Relations.for the horizontal-dielacement

-- -A -I (O .... -

- ( r -, r- t4

2.4.8.Resolution ofthedoubleintegral s.

The integrals of alinea 2.4.7. are most easily solved in transforming the

variables & and? by setting

One obtains

),, (I +x + r-Xr') (-r '  + -Z r'

that can easily be computed numerically.

-2.6-A

next allnea.

15 can be deduced from~ 12.
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- , + k + Z) + 0 XL)

21t Lr'-2xr +1,+lz)'IL 1h),

17 can be deduced from I1 .

18 and 19 are particular Lipschitz-Hankel integrals.

2.4.9. Resolution of the Lipschitz-Hankel integrals.

The solution of the Lipschitz-Hankel integrals is given by WATSON (1960).

where

Jo

with (WAYLAND,1970)

The resulting integral can easily be solved numerically.

/)

.5----
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:t 1 - T, AP).'L ,,,

18 can be deduced from 13

19 can be deduced from 14;

2.4.10..Expressions for comutations inthe axle oftheload.

When stresses and displacements are computed in the axle of the load, one has

Is ~ L M k)V Z

'-

To be applicable, all the developments of paragraph 2.4. again require

all the equations to be available In closeform.

7 /i

4t ZT-
-b -- -- - • 00 II
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3. The complete algebraical solution.

We shall develop here the complete algebraical analysis leading to the

different computerprogramsin which, because of the particular method that

we have adopted, all the problems detailled above are solved.

But to make the understanding of the method easier we first develop the

analysis, with the necessary comments, for a three-layer system.

This will enable us in the same time t6 verify the results obtained with

our original method with those of existing programs.

3.1. Algebraical ana'sis of a three-layer system (isotropic, full friction).

3.1.1..Bo. r._..on_di tionsof the syIste.

We consider VI-* = = 0 .'"

HI the thickness of the first layer

H2 the thickness of the second layer

We write A, for Arn'
, for

C, for C,m

3, for Dr

and \<.=

E23

Boundary conditions at the surface (z = 0):

T ' ,A , + A, :

Boundary conditions at the first interface (z = H1 , x =mi):

q . A,e"+ B,+ xC,2 x :), e"., A + . + ,,C 2e. ..x +

T(2: A,e-l i+CIg~24D~r) A2~-~~ " P_ ~&~(~~

W' A.e e7.", C ' .,(I~ )tX k[Ait. b x V C2  +)e - 2 (I-X) ]

/I
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Boundary conditions at the second interface (z = H1 + H2, y = m.(H 1 + H2 )):

T,- A,- + , eY+YC =7. yD I )C - ) iY D 3 _-

tr2v A2 -Y - b,2.Y IC (-iyey * D2  -Y) Y - 2 - 1

vv Xt?- bh20 +\ C1#-/D0 = L L- Bt-* -Y De"

The boundary conditions can be written in matrixform

At the surface

T T
I(A, D.,) _ (A o)

where

At the first interfaceMI (A, 5, C, D r M(A-52C2I),2) r

At the second interface

N1 3 (A-,?>-C732) T = M,4%( D53 )T

3.1.2. Solution of the-system.of.10.eguations.

We start from the conditions at the second interface and write

(A.,2C.LI) m M4 (3(D)

Matrix M3 is very easy to invert:

/-2e1+Y)eY 2,eg 2' E -y ,

2(A-%y)e-/ -yet2(4-y)e9  2ye Y  - Y

that we write as follows-;j _ L'.M ,.

M~aL A M3 M32
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wi th

S 0 0

IM32. = ( o o (4 o
4 -Y )4

and

with

?-Y)

-L (A-Y)

so that T

We notice that the positive exponent ey has disappeared

We now develop those matrixproducts necessary to avoid convergency and

overflowproblems. For the others we only take notice of the terms equal

to zero.

So that

+

where the sign + denotes some constant or some linear function of m.

I,!J .
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N3MA I -( eL= (.L).U.
0

and

(A.hC 2 D) -4 j24 -(IL)'.UL] C?,-D 3) T (

The term (1 + L).UL will be part of the constant in the final denominator,

constant whose value we have to know to ensure convergency at the surface.

We now consider the conditions at the first interface:

-1l -1(4
Matrix M is identic to matrix M3 in which y is replaced by x:

We write matrix M2 as follows

x0 X

o L +,x) o 0 (

and

(A,,C,, -+ Di,=.M 2 ) + 2 M,,2I +U- M I,21

(A21~lCzD2)

We again develop the products as before:

-I

-. -, - Y -- - -
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o 0 +

a3 0 a 'I

TI6 MA,2  31Al-
10 -9- 4

o o 0 U

0 4- a J

4- o 4- o

The products whichwill not converge normally are

2y -2L"- ,)

I--

because it can happen that z > -

and

Cne easily verifies that

so that the concerned products disappear from the relation.

One verifies also that

314 M 51 k1
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k 0 k o2 o o o °

1< 0 'K (A 4-. v

-yZ 3'a

4 A

M~31 -M 41 - ).~2

k i

0

The first matrix is a constant, the second is a linear function of y.

* a



t I ,t

I . R. 48.

o 01 /

S0 1

where

L +j~A-~ L) ~4 )

The three first terms of the expression between brackets converge normally;

the last product M5 2.M6 2 contains a constant and a term, linear function of z.

We now write the conditions at the second interface in matrixform:

-4 17

-A1jr- 2 Y -.4 -0
e-o

-l ,,, A( , =L -1 ,, " .T._1
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-i -.--1.,, )u- (.-z.,.)
L4 

+

L L(2-1++) -L -L[ -2

J "5

04- 4-

M IS .14r. 51

4ft

O

o

)'

/i

" ~~~~~. ...... .- i.. . "l'--
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L J + A~ + C j~ C .4 X -7- (A- -X) )7ZJ

Boundary conditions at the bottom (z : HI + H2 + H3 + H4):

W: A4 ., N J -

3.2.2. Solution of the_system of 16 equations:

In the equations of the conditions at the third interface, A4 is replaced
by its value taken from the fixed bottom ndition:

A, e: , e"- D4 (-I I. + )

We write the conditions at the third interface in matrix form

For simplicity here, we take = (wk -.k, -=' - ='-

so that 2 -

C-0 z) C(2-A.2 42[2)% (4--2)3-x)

-- 11 A

0 0 0 0

o 0 03

- ~'e.
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Boundary conditions at the first interface (z = H1 ):

Ij~~~4 A(eX-21
2' C, A-2e-,)L

. A, e - C +-

A2.4 - b. C C2.2.-)e +) C2 -)
W A, - C, C, (2.-,4), .x) a.' - Ca -A ,+ ) -x

Boundary Conditions at the second interface (z = HI + H2):

A + P, A-CC- (A - , -
~: Al~y + 1?"

A-2 0 , - b., - , C _- ,, .2 Cz)2,L,,7 ,-

VA 2.Y b-10 - C7 .

k- . 4b- -,% 0 3 (-'+-'j)0' - OIe~
Boundary Conditions at the third interface (z = 1 + H2 + H3):

z}

Av.. bA P--- Y A-24)t~

-b~ - b 4.7- C424~2el ~

I

/
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3.2. Algebraical analysis of an isotropic four-layer system with

fixed bottom.

3.2.1. Boundary. conditions.

In this analysis, we choose as fixed bottom condition the one described
in § 1.2.2. (w = 0).

We write

A.,: A, X S, M 7 l - =Cim ,l ,

2 (~~) A LA+l )

L, _, -_ _, . ,. _

lX

where H1, H2 H3 and H4 are the thicknesses of the four layers.

Boundary nditions at the surface (z -0):

2' -) + D 2+.)

72. A
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E1=100000 U1=O.50 H1=10.00 A= 10.00 P= 1.00

E2- 10000 U2=0.50 H2=20.00 R= 0.W0
E3= 1000 U3=0.50

* SURFACE * BASE , SURFACE * CASE * SURFACE

* * COUCHE 1 * COUCHE 2 * COUCHE 2 * COUC04E 3

*C')NTRAINTES VERTICALES * * 40.247002* +0.247002* +0.029472* 40.62147-1

*CONTRAINIES RADIALES * * -I.B64850* +0.035817* -0.204340)* +0.006091*

*CONTRAINTES CIRCONFER. * * -1.864850* * -0.204340* 40.00:e,091*

*rLECHES *42. 1833E-03* * * *

Table 1. Stresses in a three-layer system (BASIC Program).

RESULIATS DANS L'AXE DE LA CHARGE.

EI=100000. L11=0.50 H1210.00 A= 10.00 Pz 1.00

E2s 10000. U220.50 H ,220.00 R= .00

Us 1000. U3uO.50

SURFACE BASE SURFACE BASE SUkFACE

CCUC14Et CUUCHE2 COUCHE2 COLCHE3

CONTRAIrNTES VERTICALES * .247002 .247002 0294172 .029472

CONIRAINTES HAUIALES * -164e50 035817 -.204340 .006091

CONIRAINTES CIRLONF, * -1.f64850 .035817 -.204340 .006091

FLECSE .022 * *

Table 2. Stresses in a three-layer system (FORTRAN 77 Program).

-'
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3..4 Co0mparIson withei tn ro as

First we have computed the stresses in a three-layer isotropic system with

a program written in BASIC and for which the equations had been developped

in complete closeform (VAN CAUWELAERT, 1983).

The accuracy of this program had been checked earlier with the results

published by JONES (1962 ).

Then we have written a new program in FORTRAN 77 based on the developments

presented in paragraphs 3.1.1. and 3.1.2. and calculated with this program

the stresses in the same three-layer system.

The results obtained by the program in BASIC are given in table 1, those

obtained by the program in FORTRAN 77 are given in table 2: we notice that

the agreement between both is perfect.

The complete listing of the FORTRAN 77 program is given in appendix;

The matrices are dimensionned and upbuilt in the beginning of the

program. The variables x (=mH1) and y (=mH1 + mH2) are introduced in the

matrices by instruction 214. The products between matrices are carried out

in the same instruction 214 by calling subroutines 800, 810, 830 and 860.

iI

F J i

, ! ,- , " j ,
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3.1.3. Relation for the vertical deflection at the surface.

We notice that the values of the parameters given by (10) and (11) all converge

normally, except for parameters BI and D which contain each a constant in

the numerator:

A W,+ ) (.j4 k) (-L) ( (

--

V V
The influence of this constant can be eliminated as indicated in § 2.3.

Here it is nevertheless easier to eliminate B1.

From the boundary conditions at the surface, we have

The relation for the deflection at the surface is given by

0

+ AA

= -p g, , ) W i

The first integral of (12) is solved analytically, the second one converges j
fast and safely during the numerical integration procedure.

r' -.

,~~0~~,, *
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The parameters A1 , B1, C1 and 01 are then obtained from (6)

Al .4 + k~l ) + M3 , (2)P3]

&("+L)i lX LMI-L (Y) B3  +i IIM.LLI)D3]

~~B3 + e M12A, (2.) B3 + Mi24,(2,21)3], lo

Parameters A2, B2 ,,C2 and D2 are obtained from (3)

A 2  M I M31,( V1 4D

C2=~i'1L~i)11+ M3#1 2' 4 (3.1) DV]

~21

6- (-A . L) T
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I. = ctll. CL')

IM ("I ''

C-1 11l = 2)
The terms a i, bij and c.i. are the results of very simple computerprocedures.

We can now write (8) in extended form:

(+ )C+L) - ei)' + o,,-e 2  Y- ) (+L).c,, B+

- -0y-x)

+6. -LC-L). C22 ] D3  0

We write this

[(A<)-i+) CdtI]-b-3 + Ck I'D3

-+ ) (14-L) +d ] 4 + k4) (-,+) +- I

where (I + K).(1 + L) is, as a matter of fact, a constant and all d11, d12,

d21 and d22 converge normally.

Finally one obtains

B (I+ k) ('I* 4AA2 L______ A__)
V V

where

. (4 A cA)*L) + I-) ( ) + L)(,, 24 cA kt1  + ck, 421 - cAiiCkIj

-+ /
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M 1121- M 3-1A + +

CUAI . UL I o) L MurL

1~22. UL=o

so that

The positive exponent e2x has again disappeared together with the highest

negative exponent e-2 (y + x).

Finally we consider the conditions at the surface

I ~(A , ~C. I)T = (A4 O)T()
We replace in (7), (A1 B1 C1 D1)Tby its value from (6)

AL [(.4+)(-A+L).UL - -2t-i' +()e%)lI M 4
"214 3 )T  (4 oT

+ )(A+L) T. UL+ L I A

/!
C2 °)

I -a
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+ ° +
II. M 11 = + +

We replace in (5), (A 2 B2 C2 D 2) T by its value from (3)

2Y Ci+L)UL] (b 3)T

0 UL

0 0f

4- +-o 0
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The product we are interested in for later computation is

0 ° o 0

2 o

+ 0 z

0 0

4 z L.,-L ) + Lw} ,- = N'41

o o

This product contains a constant, a linear function of y and a linear

function of z. The term, function of y.z, a nonlinaer functiondisappears.

The other products are

, I
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wi th 4- \

The final relation becomes

(A i)TA

2. Cr 2) A

/
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Next we write the conditions at the first interface in matrixform

(A, S, C, D,)" 1 S I- Ca L Dz)

,= -

tW- " J2 - ,, - (-o

A -K ( 2 - + + Y ) ( - ,-, - ;L) - . , +

1 00

, e. .

A -I)

T <> 'M ("AbL I"" T)

( A %: r , .j . e - m L .-+ -, o11 -y2) -

o F - + F--a4-x f
o -U -I --)
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ri 4 1M.1 111 2.I =

F , C -' , ., o 0 1=

IM 3 0 0

b 0 +

0

The first matrix is a constant, the second is a linear function of x.

0 + 1

S0 0 C 0o

o - o +

a 0

I

i+

4j 0 t, D.

!A

.-. )JV12'

N + b,)
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The products which will not converge nomally are

M 4' MMo2- *Y4 42I* '34.1

because that it can happen that x > 1-Y

or x > --y

or x z

and

One easily verifies that

M , .,., .M -.M ,, ,,- 3n ,. M J.1) .M ,-. .M ;,,2- -
tl.2J

so that again the concerned products disappear from the relation.

The product, we are interested in for later computationpis

tL 304 M31 Mu7. * 413iM~~S 1ASV j -v

v5. i. T(s,-+ -. FL-z

0

00

0

, L~L (o Fok T

On hs1 3 W. 1  - 0~ i(A4i7

_ _______LA K.
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One verifies that the products

M .11. lV L

~~12.21i W

The other products are

(MI*I V o\VM2 T 1 2 a 1 4~h=4 -

m 1,12,a NI - o C T21i V2*.. /i" r T74

, Q

and finally

- 1 7 - -T 0tZ 4L- Y ) 

. - . TI z -T 14  + T

+ .- T)3  -.

A 2-~(b I,)T(i)T3

TA,,

" _____*__ .. .. _ _ -7 44 " _ T 1 .. .. .. _ _ _____-.__---
O w _
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Finally we considerthe boundary conditio, s at the surface:

- -2.' C A

that we can transform into

,CL CA I

Extending matrix (d..), equal to T we obtain

-Ia - -A , - ) -c cz

'(4-) (+')(1) ')I -c1 C it.
C4, .

L. 4(,~Fk~(~ (~~ ~~

- -- 1c, L
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This last relation can be writtenin extended form

t~ ~ ~+ .. + Tz,, , ) L.r ..
4 ,. + c-L - -C 4.v (i- .) -I

41 U1- l k 7 Lz. y C32-.,.FL. z4LC-LA -W , 2 _( .4- -) (.i-p )

C 21  2+ c4 , Y IA - ,

4,~ ~ ~ -I - z2X2)_1C4L 2. -4-4 F ) iz

We can write this system as follows

(A- ,) L.+, ) (-h-)
64

where all nij converge absolutely normally and f(xyz) Is a linear function

of x, y and z.

Solving this system, we obtain

44 6

't j+% (A-t• Lm mm
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where

"_u,. "2- -- ,'n.~1. 'L (L + h-) -JL"Z) +b, ,

L W., L-.. -)?)43 -L, L 4, -)-41)

- ",wIe,- L" , (A- 2,)-t',Jz T ,L, 17W.'-' [,-4 ,L) i4,IL,

4. P~ L i ~yL) - ~ ~ 6~

The linear function f(xyz) has disappeared in the denominator.

The function f(nij) converges normally so that the limit value for the

denominator is a constant:

,I

L kL

g

* ...- .-S - S. ii-
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3.2.3. Values of the parameters Ai, Di.

At the bottom of the first layer, parameters A1 and C1 are factors of the

positive exponent ex. Parameters B1 and D1 are factors of the negative

exponent e-x .
Thus when computing stresses in the first layer we have to input at least

two positive exponents which necessarly will lead to overflowproblems.

Therefore we express in the program next modified values of the parameters

A1, B1, C1 and D1 : A1.ex, B1, Cl.ex, D1.

Then if we have to compute a stress, let us say at a depth 2x/3, we multiply

the parameters A1.e and C1.e
x by the negative exponent e-X/3 and the

parameters B1 and D1 by the negative exponent e
"2x/3 and avoid, in doing so,

all overflow problems.

The values of the parameters A1, B1, C1 and D1 are given by (sol. 3) of §3.2.2.

To obtain the values for A1 .e
x , B1, C1.e and D1 we split (sol. 3) into

two parts:

A P T

We notice now that the matrices Tli and T41 contain nothing but zeros in

their first and third rows, so that

and that the matrices T2i and T3i contain nothing but zeros in their second

and fourth rows, so that

+- 4.
TT'D4) o D4) = 0

.4- *+
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Thus the values of A1 and C1 depend only on the matrices T21 and T 31.
This has to be so, because only the exponents multiplying the matrices

T21 and T3i do not overflow when they are multiplied by ex.
The exponents multiplying the matrices Tii and T could overflow when

multiplied by eX: for example, the exponent e 2( - Z) multiplying the

matrix T14 if x> 2(t - z).

We obtain then

X c T 4

(A TC 4 - -) (i - . .-L, (I - % )
(2-y -- '-

T 4 e+2

+ ('r-- --Y)Y -AT "TJ "
4t.e 4° ° O -4.e. 4Va

Tt2.

-P- 4t

r ~2()-y) 2(,r- 2L~zA)T *7yv .. 2~z

2o (so.c 2).

T T *-

A
b2

4L N+
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Finally we obtain for the parameters A3, B3, C3 and D3 (sol. 1):

- t~-2 -Z 1I

o ~ 3 A~ D4)T

3.2.4. The deflection at the surface.

The vertical deflection at the surface is given by

The parameters B1 and D do not converge normally because they contain a

constant in their numerator.

Utilizing the boundary conditions at the surface, we express then B1 and D

in function of A1 and C1:

A - 2A C ,

so that

A,-b,- C, 2+ ) , -- ,)-

and

The first integral can be solved analytically (§ 2.3). The second one

converges absolutely normally.



I I 
'

I.R.63.

3.2.5. The stresses and displacements in the first layer.

We compute, for example, the vertical stress at a depth 0< H( H1.

Its value is given by

T., -14 C- r) ,(-n,) A,.  -  '  .- !

-- e--i e-_

If the value of H is very small (if we compute a stress near the surface),
the values of B le

-mH and DlVe-mH willandD1 e wllconverge veyslowly.

We know from the preceeding paragraph that

),. = . .^ ,(

-2A +c,( - h

So that

2A, eC, (A- 2., _,\, 4

We write then

T'Z, - 1%.D' (VA ? r) ( IA,t.-× HC#(,a.- h.'L

4.- ZA ,(A + -+) A . 4 - A , I-

We can again split this integral into

-kH

2A,

-aA ,? b, +).Zi H) ,,.(G/
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The first intergal can be solved analytically (§ 2.4), the second one

converges normally.

Of course the same procedure can be applied for the computation of all

other stresses or dlsplacements.in the first layer.
3.2.6. The stresses and dislacements in the second layer.

Normally one should not have numerical problems in the computation of

stresses and displacements in the second layer, except for the case that

the first layer should be very thin (which can happen with overlays).

The terms B2.e'mH and D2.e
-mH could then again converge quite slowly.

The solution is then obtained as follows.

We write
A4 - IV, (2.1 , 2.t S ) Z)T

where N1 1(2.1,2.2) are the first and the second term of the second row

of matrix N11.

-, - V, z D

-I L-(4,-

D- 4 -Ft ki
'D,46D V

0! 4. k,
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We split then (B4  D4)T en write

= + 
4,1 D 4 1) 2 .2 ) (

(4.. , (-,..,, P) T(1 >,U
A

) G (- ,) (A,- ,9

'D 2 , , + A - 14, 2 )T

We notice that the terms B21, B22, D21 and D22 converge normally.

4.. -x D ) T_bz : Iv,, (2..1, z -) 42

(A). )JQ-IYi (A 4 t1)t)

LT,~~ k- L.. 1-

o~~- C,-T,)_-

We split now

Vc L F7 L 2

where Converges normally.

... -. 7 . I :
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We divide then the numerator by the denominator and obtain

AI LT, (1 Ah 4 .g

4 F,'Fl-

The first term can be integrated analytically (§ 2.4), the second

one converges normally.

3.2.7.Thestresses and disP!acemenTin the.third layer.

Following the same procedure as in the preceeding paragraph, we obtain

L= L

II

, L :.'." .... ..-..... , -. --- -"' --" ,,
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APPENDIX

Three-layer elastic system

Computer program F77
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